Acta Cryst. (1977). B33, 2314-2316

5,9-Diacetyl (3,6)Bicycloleuconolide A₃

By Arnaud Ducruix and Claudine Pascard

Institut de Chimie des Substances Naturelles, CNRS, 91190 Gif-sur-Yvette, France

AND S. OMURA AND A. NAKAGAWA

School of Pharmacy, Kitasato University and Kitasato Institute, Minato-ku, Tokyo, Japan

(Received 24 January 1977; accepted 21 February 1977)

Abstract. $C_{24}H_{34}O_8$, monoclinic, $P2_1$, a = 11.206 (6), b $= 8.248 (4), c = 14.272 (7) \text{ Å}, \beta = 107.66 (2)^{\circ}, Z = 2.$ The structure was solved by direct methods and refined to R = 5.1%. The title compound is a 16-memberedring lactone, with a five-membered ring branched on C(3) and C(6). The principal configurations are 3(R), 6(R) and 9(R).

Introduction. Cell parameters were determined by a least-squares refinement of axial reflexions measured by a Philips PW 1100 automatic diffractometer. Intensities

were collected with graphite-monochromated Cu Kc
radiation. Measurements were carried out in the $\omega/2\ell$
mode ($\theta \leq 68^{\circ}$), at a scan speed of 0.04° s ⁻¹ , with
scans of 2.2°. Background measurements of 15 s were
made on both sides of each scan. 2468 intensities were
retained $[I \ge 2\sigma(I)]$.

The structure was solved by the application of MULTAN (Germain, Main & Woolfson, 1971). At the end of the isotropic refinement (R = 14%), H atoms were located from difference series. After introduction of anisotropic temperature factors for the heavy atoms. and isotropic temperature coefficients (equal to those of the bonded atom) for H, refinement of the different

Table	1.	Fractional	coordinates	(×10⁴)	for	the	heavy
		atoms, wi	ith e.s.d.'s in p	arenth	eses		

		-		
	x	У	z	
C(1)	2599 (3)	5708 (5)	6438 (3)	
C(2)	3196 (3)	5335 (5)	7507(2)	
C(3)	4256 (3)	6475 (4)	8023 (2)	
C(4)	4849 (3)	6084 (4)	9116 (2)	
C(5)	6225 (3)	6340 (4)	9300 (2)	
C(6)	6454 (3)	5630 (4)	8372 (2)	
C(7)	7778 (3)	5825 (4)	8321 (2)	
C(8)	8113 (3)	5105 (4)	7448 (2)	
C(9)	7868 (3)	3276 (4)	7287 (2)	
C(10)	6538 (3)	2777 (4)	6853 (2)	
C(11)	5744 (3)	3335 (4)	6019 (2)	
C(12)	4430 (3)	2864 (4)	5639 (2)	
C(13)	3568 (3)	3628 (5)	4934 (2)	
C(14)	2220 (3)	3247 (5)	4613 (2)	
C(15)	1402 (3)	4464 (5)	4924 (2)	
C(16)	1837 (2)	4512 (3)	5995 (2)	
C(17)	5349 (3)	6429 (4)	7567 (2)	
C(18)	5660 (4)	8103 (6)	7309 (3)	
O(19)	5581 (7)	9285 (5)	7613 (4)	
O(20)	6931 (2)	5515 (3)	10181 (2)	
C(21)	7611 (4)	6424 (6)	10936 (3)	
O(22)	7875 (3)	7799 (5)	10849 (2)	
C(23)	8035 (5)	5465 (9)	11855 (3)	
O(24)	4377 (2)	7097 (3)	9721 (2)	
C(25)A	3393 (9)	6585 (11)	10022 (6)	
C(25)B	4197 (8)	6364 (11)	10536 (6)	
C(26)	9480 (3)	5482 (6)	7560 (3)	
O(27)	8372 (2)	2528 (3)	8253 (1)	
C(28)	8757 (3)	995 (5)	8279 (3)	
O(29)	8727 (3)	216 (4)	7567 (3)	
C(30)	9235 (4)	390 (6)	9312 (3)	
C(31)	49 (4)	4031 (7)	4613 (3)	
O(32)	2796 (2)	6910 (3)	6030 (2)	

O(32)

Table 2.	Fractional coordinates $(\times 10^3)$ for H atoms,
	with e.s.d.'s in parentheses

	x	У	Z
H(2)A	268	503	781
H(2)B	339	431	760
H(3)	397	747	798
H(4)	468	494	917
H(5)	641	749	932
H(6)	622	450	837
H(7)A	795	701	833
H(7)B	839	535	890
H(8)	766	556	688
H(9)	828	278	684
H(10)	627	192	708
H(11)	606	416	570
H(12)	415	186	585
H(13)	378	441	468
H(14)A	201	192	475
H(14)B	185	301	396
H(15)	159	543	468
H(17)	519	576	697
H(18)	600	810	675
H(23)A	756	503	1202
H(23)B	857	654	1227
H(23)C	819	431	1168
H(26)A	968	663	762
H(26)B	957	512	699
H(26)C	1007	506	812
H(30)A	938	128	982
H(30)B	873	-45	947
H(30)C	991	10	923
H(31)A	-46	463	492
H(31)B	0	284	498
H(31)C	-29	385	409

parameters led to an R value of 6.2%. At this stage, the O(24)–C(25) distance was really too short (1.28 Å). A difference Fourier series was calculated omitting C(25). Two sites appeared which were attributed to two equally occupied positions of C(25). After introduction of those two atomic sites with occupation factors of $\frac{1}{2}$, and isotropic B values, we resumed the refinement by full-matrix least squares; the final R was 5.1%.

The atomic structure factors for C and O were taken from Doyle & Turner (1968), and for H from Stewart, Davidson & Simpson (1965). The atomic coordinates are listed in Table 1 for the heavy atoms, and in Table 2 for H. Bond distances and angles are presented in Tables 3 and 4.*

* Lists of structure factors and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32521 (17 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Table 3. Intramolecular bond distances (Å)

The e.s.d.'s, given in parentheses, refer to the last digit.

C(1) - C(2)	1.500 (5)	C(11) - C(12)	1.459 (5)
C(1)–O(16)	1.332(5)	C(12) - C(13)	1.324 (5)
C(1)-O(32)	1.204 (5)	C(13) - C(14)	1.473 (5)
C(2)–C(3)	1.519 (5)	C(14) - C(15)	1.513 (5)
C(3)-C(4)	1.533 (4)	C(15)-O(16)	1.458 (4)
C(3)–C(17)	1.550 (5)	C(15) - C(31)	1.489 (6)
C(4) - C(5)	1.499 (5)	C(17)–C(18)	1.497 (6)
C(4)–O(24)	1.414 (4)	C(18)–O(19)	1.082 (7)
C(5) - C(6)	1.539 (4)	O(20)–C(21)	1.344 (5)
C(5)–O(20)	1.436 (4)	C(21)–O(22)	1.188 (6)
C(6)-C(7)	1.516 (5)	C(21)–C(23)	1.481 (7)
C(6) - C(17)	1.557 (4)	O(24)–C(25)A	1.366 (10)
C(7)–C(8)	1.526 (5)	O(24) - C(25)B	1.379 (9)
C(8)–C(9)	1.538 (5)	C(25)A - C(25)B	0.991 (12)
C(8)–C(26)	1.524 (5)	O(27)–C(28)	1.332 (5)
C(9) - C(10)	1.488 (5)	C(28)–O(29)	1.194 (5)
C(9)–O(27)	1.458 (4)	C(28)–C(30)	1.493 (6)
C(10)-C(11)	1.334 (5)		

Table 4. Intramolecular bond angles (°)

The e.s.d.'s, given in parentheses, refer to the last digit.

C(2)-C(1)-O(16)	110.8 (3)	C(6)-C(7)-C(8)	119.0 (3)	C(1) = O(16) = C(15)	118.7 (3)
C(2)-C(1)-O(32)	124.8 (3)	C(7) - C(8) - C(9)	115.2(3)	C(3) - C(17) - C(6)	104.7(3)
O(16)C(1)O(32)	124.4 (3)	C(7)-C(8)-C(26)	108.9 (3)	C(3) - C(17) - C(18)	110.7 (3)
C(1)-C(2)-C(3)	114.0 (3)	C(9)-C(8)-C(26)	110.1 (3)	C(6) - C(17) - C(18)	112.3(3)
C(2)-C(3)-C(4)	113.4 (3)	C(8) - C(9) - C(10)	116.4 (3)	C(17) - C(18) - O(19)	132.7(5)
C(2)-C(3)-C(17)	112.5 (3)	C(8)-C(9)-O(27)	105.9 (3)	C(5) - O(20) - C(21)	117.7 (3)
C(4)-C(3)-C(17)	105.5 (3)	C(10)-C(9)-O(27)	109.1 (3)	O(20)-C(21)-O(22)	123.2(4)
C(3)-C(4)-C(5)	104.7 (3)	C(9)-C(10)-C(11)	126.0 (3)	O(20) - C(21) - C(23)	111.4 (4)
C(3)-C(4)-O(24)	111.8 (3)	C(10)-C(11)-C(12)	124.4 (3)	O(22) - C(21) - C(23)	125.4 (4)
C(5)-C(4)-O(24)	111.4 (3)	C(11)-C(12)-C(13)	125.3 (3)	C(4) - O(24) - C(25)A	119.7 (4)
C(4) - C(5) - C(6)	103.1 (3)	C(12)-C(13)-C(14)	125.3 (3)	C(4) - O(24) - C(25)B	115.7 (4)
C(4) - C(5) - O(20)	110.5 (3)	C(13)-C(14)-C(15)	115.0 (3)	C(9) - O(27) - C(28)	117.2(3)
C(6)-C(5)-O(20)	112.4 (3)	C(14)–C(15)–O(16)	106.6 (3)	O(27)-C(28)-O(29)	$124 \cdot 1(4)$
C(5)-C(6)-C(7)	114.9 (3)	C(14)-C(15)-C(31)	114.0 (3)	O(27) - C(28) - C(30)	111.2 (3)
C(5)-C(6)-C(17)	99.9 (2)	O(16) - C(15) - C(31)	107.8 (3)	O(29) - C(28) - C(30)	124.7 (4)
C(7)-C(6)-C(17)	119.4 (3)				. ,

Fig. 1. The molecular structure of $C_{24}H_{34}O_8$.

Table 5. Torsion angles (°)

(a) The macrocycle

U(10) - U(1) - U(2) - U(3)	169-2
C(1)-C(2)-C(3)-C(4)	179.6
C(2)-C(3)-C(4)-C(5)	140.4
C(3)-C(4)-C(5)-C(6)	-40.2
C(4)-C(5)-C(6)-C(7)	176-0
C(5)-C(6)-C(7)-C(8)	177.8
C(6)-C(7)-C(8)-C(9)	-56.2
C(7)-C(8)-C(9)-C(10)	75.3
C(8)-C(9)-C(10)-C(11)	56.0
C(9)-C(10)-C(11)-C(12)	-177.3
C(10)-C(11)-C(12)-C(13)	165.4
C(11)-C(12)-C(13)-C(14)	-174.0
C(12)-C(13)-C(14)-C(15)	107.0
C(13)-C(14)-C(15)-O(16)	-59.8
C(14)-C(15)-O(16)-C(1)	99.2
C(15)-O(16)-C(1)-C(2)	-165.8
(b) The pentagonal cycle	
C(17)-C(3)-C(4)-C(5)	16.8
C(3) - C(4) - C(5) - C(6)	-40.2
C(4)-C(5)-C(6)-C(17)	4 7.0
C(4)-C(5)-C(6)-C(17) C(5)-C(6)-C(17)-C(3)	47.0 -35.9
C(4)-C(5)-C(6)-C(17) $C(5)-C(6)-C(17)-C(3)$ $C(6)-C(17)-C(3)-C(4)$	$47.0 \\ -35.9 \\ 12.6$
C(4)-C(5)-C(6)-C(17) $C(5)-C(6)-C(17)-C(3)$ $C(6)-C(17)-C(3)-C(4)$ (c) The side chains	47.0 -35.9 12.6
C(4)-C(5)-C(6)-C(17) $C(5)-C(6)-C(17)-C(3)$ $C(6)-C(17)-C(3)-C(4)$ (c) The side chains H(4)-C(4)-O(24)-C(25)A	47.0 -35.9 12.6 -24.2
C(4)-C(5)-C(6)-C(17) $C(5)-C(6)-C(17)-C(3)$ $C(6)-C(17)-C(3)-C(4)$ (c) The side chains H(4)-C(4)-O(24)-C(25)A $H(4)-C(4)-O(24)-C(25)B$	$ \begin{array}{r} 47.0 \\ -35.9 \\ 12.6 \\ \end{array} $
C(4)-C(5)-C(6)-C(17) $C(5)-C(6)-C(17)-C(3)$ $C(6)-C(17)-C(3)-C(4)$ (c) The side chains H(4)-C(4)-O(24)-C(25)A $H(4)-C(4)-O(24)-C(25)B$ $H(5)-C(5)-O(20)-C(21)$	$ \begin{array}{r} 47.0 \\ -35.9 \\ 12.6 \\ \end{array} $
C(4) - C(5) - C(6) - C(17) $C(5) - C(6) - C(17) - C(3)$ $C(6) - C(17) - C(3) - C(4)$ (c) The side chains H(4) - C(4) - O(24) - C(25)A $H(4) - C(4) - O(24) - C(25)B$ $H(5) - C(5) - O(20) - C(21)$ $C(5) - O(20) - C(21) - O(22)$	$47.0 \\ -35.9 \\ 12.6 \\ -24.2 \\ 23.8 \\ 8.0 \\ -16.7 \\ $
C(4) - C(5) - C(6) - C(17) $C(5) - C(6) - C(17) - C(3)$ $C(6) - C(17) - C(3) - C(4)$ (c) The side chains H(4) - C(4) - O(24) - C(25)A $H(4) - C(4) - O(24) - C(25)B$ $H(5) - C(5) - O(20) - C(21)$ $C(5) - O(20) - C(21) - O(22)$ $H(9) - C(9) - O(27) - C(28)$	$47.0 \\ -35.9 \\ 12.6 \\ -24.2 \\ 23.8 \\ 8.0 \\ -16.7 \\ -30.1 \\ -$
C(4) - C(5) - C(6) - C(17) $C(5) - C(6) - C(17) - C(3)$ $C(6) - C(17) - C(3) - C(4)$ (c) The side chains H(4) - C(4) - O(24) - C(25)A $H(4) - C(4) - O(24) - C(25)B$ $H(5) - C(5) - O(20) - C(21)$ $C(5) - O(20) - C(21) - O(22)$ $H(9) - C(9) - O(27) - C(28)$ $C(9) - O(27) - C(28) - O(29)$	$ \begin{array}{r} 47.0 \\ -35.9 \\ 12.6 \\ \end{array} $ $ \begin{array}{r} -24.2 \\ 23.8 \\ 8.0 \\ -16.7 \\ -30.1 \\ 1.0 \\ \end{array} $
C(4)-C(5)-C(6)-C(17) $C(5)-C(6)-C(17)-C(3)$ $C(6)-C(17)-C(3)-C(4)$ (c) The side chains H(4)-C(4)-O(24)-C(25)A $H(4)-C(4)-O(24)-C(25)B$ $H(5)-C(5)-O(20)-C(21)$ $C(5)-O(20)-C(21)-O(22)$ $H(9)-C(9)-O(27)-C(28)$ $C(9)-O(27)-C(28)-O(29)$ $H(17)-C(17)-C(18)-O(19)$	$ \begin{array}{r} 47.0 \\ -35.9 \\ 12.6 \\ \end{array} $ $ \begin{array}{r} -24.2 \\ 23.8 \\ 8.0 \\ -16.7 \\ -30.1 \\ 1.0 \\ 29.0 \\ \end{array} $

Discussion. (3,6)Bicycloleucomycin A_3 (I) was obtained (\overline{O} mura, Nakagawa, Suzuki & Hata, 1974) from leucomycin A_3 , a basic macrolide antibiotic produced by *Streptomyces kitasatoensis* Hata. The con-

Table 6. Deviations (Å) from the least-squares planes with reference to the orthogonal axes a, b and c*

Plane	I: 0.4143X - 0.6988Y - 0.5831Z + 5.2156 = 0.
Plane	II: $0.4603X - 0.7276Y - 0.5087Z + 4.4011 = 0.$
Plane	$111 \cdot 0.3615X - 0.6454Y - 0.6729Z + 5.7729 = 0.$

	Plane I	Plane II	Plane III
C(9) C(10) C(11) C(12) C(13) C(14)	$ \begin{array}{c} -0.10 \\ -0.01 \\ 0.10 \\ 0.13 \\ -0.01 \\ -0.11 \end{array} $	$0 \\ 0 \\ -0.06t \\ -0.33t \\ 0.51t$	$-0.51^{+}_{-0.40^{+}_{-0.12^{+}$

Angle II, $III = 12^{\circ}$.

[†] Atom not included in the calculation of the mean plane.

figurations at C(3), C(6) and C(17) of this compound were unknown, as was the configuration at C(9). The C(9) configuration was also an unsolved problem for leucomycin A_3 itself, as it could not be deduced from a previous X-ray investigation of demycarosyl leucomycin A_3 hydrobromide (Hiramatsu, Furusaki, Noda, Naya, Tomiie & Nitta, 1970) (III). The present X-ray structure analysis was performed on (II), which is the diacetyl derivative of the aglycone part of (I) (Ducruix, Pascard, Nakagawa & Omura, 1976).

Fig. 1 represents the macrocyle. C(25) occupies two positions: C(25)A and C(25)B. A list of the different torsion angles is given in Table 5. The five-membered ring is a twisted half-chair: $\Delta = 7^{\circ}$, $\varphi = 47^{\circ}$ (Altona, Geise & Romers, 1968). The plane defined by C(9), C(10), C(11) and C(12), and that containing C(12), C(13) and C(14) form an angle of 12° (Table 6).

By relating the established configuration of the title compound to the admitted absolute configuration of demycarosyl leucomycin hydrobromide (Hiramatsu *et al.*, 1970), an absolute configuration can be attributed to all the asymmetric centres: 3(R), 5(S), 6(R), 8(R), 9(R), 15(R), 17(R).

References

- ALTONA, C., GEISE, H. J. & ROMERS, C. (1968). Tetrahedron, 24, 13-32.
- DOYLE, P. A. & TURNER, P. S. (1968). Acta Cryst. A24, 390-397.
- DUCRUIX, A., PASCARD, C., NAKAGAWA, A. & ŌMURA, S. (1976). Chem. Commun. pp. 947–948.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.
- HIRAMATSU, M., FURUSAKI, A., NODA, T., NAYA, K., TOMIIE, Y. & NITTA, I. (1970). Bull. Chem. Soc. Japan, 43, 1966–1975.
- Омига, S., Nakagawa, A., Suzuki, K. & Hata, T. (1974). J. Antibiot. 27, 370–372.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.